

Inertia-Guided Flow Completion and Style Fusion for Video Inpainting

Kaidong Zhang¹, Jingjing Fu², Dong Liu¹

¹ University of Science and Technology of China, Hefei, China

² Microsoft Research Asia, Beijing, China

Code is available at: https://github.com/hitachinsk/ISVI

Inertia-Guided Flow Completion and Style Fusion for Video Inpainting

Video Inpainting

- Input: Video frames and frame-wise masks
- Output: Completed video frames with spatiotemporal coherence
- Application: Watermark removal, object removal, video retargeting, etc.

Output

Key Point in Video Inpainting

- Exploitation of complementary video content
- Maintenance of spatiotemporal coherence

T=10 T=15 T=20 T=30

Output: T=20

Zoomed patch

Motivation

• Inertia exists in any object, which causes the nearby optical flows correlated. Such context can be used for more accurate flow completion

Relevant

Irrelevant

• After flow-guided content propagation, the style difference between different frames causes the spatial inconsistency between the filled regions and the valid regions. An extra style correction component is necessary to eliminate such difference.

Img	Mean	Std
Bear/00010.jpg	88.27	44.67
Bear/00011.jpg	88.00	44.62
Bear/00021.jpg	86.54	43.10

Introduction | Method | Experiments | Conclusion

Overview

Inertia-Guided Flow Completion Network (IGFC)

Adaptive Style Fusion Network (ASFN)

Adaptive Style Fusion Network (ASFN)

(a) Input

(b) Without ASFN

(c) With ASFN

Data Simulation Pipeline

Optimization Objectives

IGFC

1. Flow reconstruction loss in hole and valid regions

$$egin{split} L_{hole} &= \left\| M_t \odot (F_t - \hat{F}_t)
ight\|_1 / \left\| M_t
ight\|_1 \ L_{valid} &= \left\| (1 - M_t) \odot (F_t - \hat{F}_t)
ight\|_1 / \left\| (1 - M_t)
ight\|_1 \end{split}$$

2. Smoothness loss

$$L_{smooth} = \left\| \nabla \hat{F}_t \right\|_1 + \left\| \triangle \hat{F}_t \right\|_1$$

3. Ternary census transform loss L_{ter}

$$L = \lambda_1 L_{hole} + \lambda_2 L_{valid} + \lambda_3 L_{smooth} + \lambda_4 L_{ter}$$

ASFN

1. Reconstruction loss

$$Ls_{hole} = \left\| M_t \odot (\nabla I_t - \nabla \hat{I}_t) \right\|_1 / \left\| M_t \right\|_1$$
$$Ls_{valid} = \left\| (1 - M_t) \odot (\nabla I_t - \nabla \hat{I}_t) \right\|_1 / \left\| (1 - M_t) \right\|_1$$
$$Ls_{rec} = Ls_{hole} + Ls_{valid}$$

- 2. GAN loss
 - Discriminator loss $Ls_D = \mathbb{E}_{x \sim P_{\nabla I_t}(x)} [\text{ReLU}(1 + D(x))] + \mathbb{E}_{z \sim P_{\nabla \hat{I}_t}(z)} [\text{ReLU}(1 - D(z))]$
 - Adversarial loss

$$Ls_{adv} = -\mathbb{E}_{z \sim P_{\nabla \hat{I}_t(z)}}[D(z)]$$

Quantitative Analysis

Method	Voutuba VOS		DAVIS									
	100000-005			square		object		960×600				
	PSNR↑	SSIM ↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM ↑	LPIPS↓	PSNR↑	SSIM ↑	LPIPS↓
VINet [18]	29.83	0.9548	0.0470	28.32	0.9425	0.0494	28.47	0.9222	0.0831	-	-	-
DFGVI [48]	32.05	0.9646	0.0380	29.75	0.9589	0.0371	30.28	0.9254	0.0522	29.10	0.9249	0.0564
CPN [20]	32.17	0.9630	0.0396	30.20	0.9528	0.0489	31.59	0.9332	0.0578	-	-	-
OPN [29]	32.66	0.9647	0.0386	31.15	0.9578	0.0443	32.40	0.9443	0.0413	-	-	-
3DGC [5]	30.22	0.9607	0.0410	28.19	0.9439	0.0485	31.69	0.9396	0.0535	-	-	-
STTN [54]	32.49	0.9642	0.0400	30.54	0.9540	0.0468	32.83	0.9426	0.0524	-	-	-
TSAM [57]	31.62	0.9615	0.0314	29.73	0.9505	0.0364	31.50	0.9344	0.0478	-	-	-
FFM [25]	33.73	0.9704	0.0297	31.87	0.9652	0.0340	34.19	0.9510	0.0449	-	-	-
FGVC [8]	33.94	0.9719	0.0259	32.14	0.9667	0.0298	33.91	0.9554	0.0360	34.23	0.9607	0.0345
Ours	34.79	0.9743	0.0225	33.23	0.9729	0.0247	<u>35.16</u>	0.9648	0.0304	35.40	0.9659	0.0303

Qualitative Comparisons (frames and videos)

Qualitative Comparisons (Flows)

Demo video (Youtube)

Demo video (Bilibili)

Introduction | Method | Experiments | Conclusion

User Study

Conclusion

- Adopt inertia prior to exploit the complementary regions in nearby optical flows for the first time
- Design adaptive style fusion network (ASFN) to eliminate the style inconsistency after flow-guided content propagation for spatial coherence
- Design a novel data simulation pipeline to reduce training cost of ASFN
- Our method has excellent quantitative and qualitative performance

Welcome to visit our project page:

https://github.com/hitachinsk/ISVI

